The sequence reconstruction problem asks for the recovery of a sequence from multiple noisy copies, where each copy may contain up to $r$ errors. In the case of permutations on \(n\) letters under the Hamming metric, this problem is closely related to the parameter $N(n,r)$, the maximum intersection size of two Hamming balls of radius $r$. While previous work has resolved \(N(n,r)\) for small radii (\(r \leq 4\)) and established asymptotic bounds for larger \(r\), we present new exact formulas for \(r \in \{5,6,7\}\) using group action techniques. In addition, we develop a formula for \(N(n,r)\) based on the irreducible characters of the symmetric group \(S_n\), along with an algorithm that enables computation of \(N(n,r)\) for larger parameters, including cases such as \(N(43,8)\) and \(N(24,14)\).
翻译:序列重构问题旨在从多个含噪声的副本中恢复原始序列,其中每个副本可能包含至多 $r$ 个错误。在汉明度量下对 $n$ 个字母的排列进行研究时,该问题与参数 $N(n,r)$ 密切相关,该参数表示两个半径为 $r$ 的汉明球的最大交集大小。尽管先前的研究已解决了小半径($r \leq 4$)情况下的 $N(n,r)$,并对更大的 $r$ 建立了渐近界,我们利用群作用技术,针对 $r \in \{5,6,7\}$ 提出了新的精确公式。此外,我们基于对称群 $S_n$ 的不可约特征,开发了一个计算 $N(n,r)$ 的公式,并设计了一种算法,使得能够计算更大参数下的 $N(n,r)$,例如 $N(43,8)$ 和 $N(24,14)$。