Golden-section search and bisection search are the two main principled algorithms for 1d minimization of quasiconvex (unimodal) functions. The first one only uses function queries, while the second one also uses gradient queries. Other algorithms exist under much stronger assumptions, such as Newton's method. However, to the best of our knowledge, there is no principled exact line search algorithm for general convex functions -- including piecewise-linear and max-compositions of convex functions -- that takes advantage of convexity. We propose two such algorithms: $\Delta$-Bisection is a variant of bisection search that uses (sub)gradient information and convexity to speed up convergence, while $\Delta$-Secant is a variant of golden-section search and uses only function queries. While bisection search reduces the $x$ interval by a factor 2 at every iteration, $\Delta$-Bisection reduces the (sometimes much) smaller $x^*$-gap $\Delta^x$ (the $x$ coordinates of $\Delta$) by at least a factor 2 at every iteration. Similarly, $\Delta$-Secant also reduces the $x^*$-gap by at least a factor 2 every second function query. Moreover, the $y^*$-gap $\Delta^y$ (the $y$ coordinates of $\Delta$) also provides a refined stopping criterion, which can also be used with other algorithms. Experiments on a few convex functions confirm that our algorithms are always faster than their quasiconvex counterparts, often by more than a factor 2. We further design a quasi-exact line search algorithm based on $\Delta$-Secant. It can be used with gradient descent as a replacement for backtracking line search, for which some parameters can be finicky to tune -- and we provide examples to this effect, on strongly-convex and smooth functions. We provide convergence guarantees, and confirm the efficiency of quasi-exact line search on a few single- and multivariate convex functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月20日
Arxiv
31+阅读 · 2021年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月20日
Arxiv
31+阅读 · 2021年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员