A common approach to valuing exotic options involves choosing a model and then determining its parameters to fit the volatility surface as closely as possible. We refer to this as the model calibration approach (MCA). A disadvantage of MCA is that some information in the volatility surface is lost during the calibration process and the prices of exotic options will not in general be consistent with those of plain vanilla options. We consider an alternative approach where the structure of the user's preferred model is preserved but points on the volatility are features input to a neural network. We refer to this as the volatility feature approach (VFA) model. We conduct experiments showing that VFA can be expected to outperform MCA for the volatility surfaces encountered in practice. Once the upfront computational time has been invested in developing the neural network, the valuation of exotic options using VFA is very fast.


翻译:评估外来选择的共同方法涉及选择一个模型,然后确定尽可能贴近挥发性表面的参数,我们将此称为模型校准方法(MCA)。MCA的缺点是,在校准过程中,挥发性表面的某些信息丢失,外来选择的价格一般与普通香草选择的价格不一致。我们考虑另一种方法,即保留用户首选模式的结构,但关于挥发性的要点是神经网络的特征输入。我们将此称为挥发性特征方法(VFA)模型。我们进行实验,表明预期挥发性表面在实际遇到的挥发性表面会超过MCA。一旦前期计算时间用于开发神经网络,使用VFA的外来选择的估值非常快。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
61+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
11+阅读 · 2020年12月2日
Learning Memory-guided Normality for Anomaly Detection
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
11+阅读 · 2020年12月2日
Learning Memory-guided Normality for Anomaly Detection
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Top
微信扫码咨询专知VIP会员