We show how dinaturality plays a central role in the interpretation of directed type theory where types are interpreted as (1-)categories and directed equality is represented by $\hom$-functors. We present a general elimination principle based on dinaturality for directed equality which very closely resembles the $J$-rule used in Martin-Löf type theory, and we highlight which syntactical restrictions are needed to interpret this rule in the context of directed equality. We then use these rules to characterize directed equality as a left relative adjoint to a functor between (para)categories of dinatural transformations which contracts together two variables appearing naturally with a single dinatural one, with the relative functor imposing the syntactic restrictions needed. We then argue that the quantifiers of such a directed type theory should be interpreted as ends and coends, which dinaturality allows us to present in adjoint-like correspondences to a weakening functor. Using these rules we give a formal interpretation to Yoneda reductions and (co)end calculus, and we use logical derivations to prove the Fubini rule for quantifier exchange, the adjointness property of Kan extensions via (co)ends, exponential objects of presheaves, and the (co)Yoneda lemma. We show transitivity (composition), congruence (functoriality), and transport (coYoneda) for directed equality by closely following the same approach of Martin-Löf type theory, with the notable exception of symmetry. We formalize our main theorems in Agda.


翻译:本文阐述了双自然性在定向类型论解释中的核心作用,其中类型被解释为(1-)范畴,而定向等式则由 $\hom$-函子表示。我们提出了一种基于双自然性的定向等式通用消去原理,该原理与 Martin-Löf 类型论中使用的 $J$-规则高度相似,并阐明了在定向等式语境下解释此规则所需的语法限制。随后,我们运用这些规则将定向等式刻画为双自然变换(副)范畴间函子的左相对伴随,该函子将两个自然出现的变量与一个双自然变量收缩在一起,而相对函子则施加了所需的语法限制。进而,我们论证了此类定向类型论的量词应解释为端和余端,双自然性使我们能够以伴随式对应关系将其呈现于弱化函子。利用这些规则,我们为 Yoneda 约化与(余)端演算提供了形式化解释,并通过逻辑推导证明了量词交换的 Fubini 规则、Kan 扩张通过(余)端的伴随性、预层的指数对象以及(余)Yoneda 引理。通过严格遵循 Martin-Löf 类型论的相同进路(对称性除外),我们展示了定向等式的传递性(复合性)、同余性(函子性)与迁移性(余 Yoneda 性)。我们的主要定理已在 Agda 中形式化实现。

0
下载
关闭预览

相关内容

【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月2日
VIP会员
相关VIP内容
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员