Deep Neural Networks (DNNs) have become ubiquitous in medical image processing and analysis. Among them, U-Nets are very popular in various image segmentation tasks. Yet, little is known about how information flows through these networks and whether they are indeed properly designed for the tasks they are being proposed for. In this paper, we employ information-theoretic tools in order to gain insight into information flow through U-Nets. In particular, we show how mutual information between input/output and an intermediate layer can be a useful tool to understand information flow through various portions of a U-Net, assess its architectural efficiency, and even propose more efficient designs.


翻译:深神经网络(DNNS)在医学图像处理和分析中变得无处不在,其中U-Net在各种图像分割任务中非常受欢迎。然而,对于信息如何通过这些网络流动,以及它们是否确实为拟议任务设计得当,人们知之甚少。在本文中,我们使用信息理论工具来深入了解通过U-Net的信息流动。特别是,我们展示了输入/产出和中间层之间的相互信息如何成为了解通过U-Net各个部分的信息流动、评估其建筑效率、甚至提出更高效的设计的有用工具。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
1+阅读 · 2021年5月27日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
Arxiv
1+阅读 · 2021年5月27日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
6+阅读 · 2018年11月29日
Top
微信扫码咨询专知VIP会员