This article provides a practical introduction to kernel discrepancies, focusing on the Maximum Mean Discrepancy (MMD), the Hilbert-Schmidt Independence Criterion (HSIC), and the Kernel Stein Discrepancy (KSD). Various estimators for these discrepancies are presented, including the commonly-used V-statistics and U-statistics, as well as several forms of the more computationally-efficient incomplete U-statistics. The importance of the choice of kernel bandwidth is stressed, showing how it affects the behaviour of the discrepancy estimation. Adaptive estimators are introduced, which combine multiple estimators with various kernels, addressing the problem of kernel selection.


翻译:本文针对最大均值差异(MMD)、希尔伯特-施密特独立性准则(HSIC)及核斯坦因差异(KSD)三种核差异方法提供实用化介绍。文中系统阐述这些差异的多种估计量,包括常用的V统计量与U统计量,以及若干计算效率更高的不完全U统计量变体。研究重点强调了核带宽选择的重要性,阐明其对差异估计行为的影响机制。同时引入自适应估计量,通过融合多核函数下的估计结果以解决核选择难题。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员