This paper investigates the use of synthetic face data to enhance Single-Morphing Attack Detection (S-MAD), addressing the limitations of availability of large-scale datasets of bona fide images due to privacy concerns. Various morphing tools and cross-dataset evaluation schemes were utilized to conduct this study. An incremental testing protocol was implemented to assess the generalization capabilities as more and more synthetic images were added. The results of the experiments show that generalization can be improved by carefully incorporating a controlled number of synthetic images into existing datasets or by gradually adding bona fide images during training. However, indiscriminate use of synthetic data can lead to sub-optimal performance. Evenmore, the use of only synthetic data (morphed and non-morphed images) achieves the highest Equal Error Rate (EER), which means in operational scenarios the best option is not relying only on synthetic data for S-MAD.


翻译:本文研究了利用合成人脸数据增强单次变形攻击检测(S-MAD)的方法,以解决因隐私问题导致的真实图像大规模数据集可用性受限的挑战。本研究采用了多种变形工具和跨数据集评估方案,并实施了增量测试协议来评估随着合成图像逐步增加时的泛化能力。实验结果表明,通过将受控数量的合成图像谨慎整合到现有数据集中,或在训练过程中逐步添加真实图像,可以提升模型的泛化性能。然而,不加选择地使用合成数据可能导致次优结果。此外,仅使用合成数据(变形与非变形图像)会得到最高的等错误率(EER),这意味着在实际应用场景中,最佳选择并非完全依赖合成数据进行S-MAD。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员