Malicious social bots achieve their malicious purposes by spreading misinformation and inciting social public opinion, seriously endangering social security, making their detection a critical concern. Recently, graph-based bot detection methods have achieved state-of-the-art (SOTA) performance. However, our research finds many isolated and poorly linked nodes in social networks, as shown in Fig.1, which graph-based methods cannot effectively detect. To address this problem, our research focuses on effectively utilizing node semantics and network structure to jointly detect sparsely linked nodes. Given the excellent performance of language models (LMs) in natural language understanding (NLU), we propose a novel social bot detection framework LGB, which consists of two main components: language model (LM) and graph neural network (GNN). Specifically, the social account information is first extracted into unified user textual sequences, which is then used to perform supervised fine-tuning (SFT) of the language model to improve its ability to understand social account semantics. Next, the semantically enriched node representation is fed into the pre-trained GNN to further enhance the node representation by aggregating information from neighbors. Finally, LGB fuses the information from both modalities to improve the detection performance of sparsely linked nodes. Extensive experiments on two real-world datasets demonstrate that LGB consistently outperforms state-of-the-art baseline models by up to 10.95%. LGB is already online: https://botdetection.aminer.cn/robotmain.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员