Gibbs sampling repeatedly samples from the conditional distribution of one variable, x_i, given other variables, either choosing i randomly, or updating sequentially using some systematic or random order. When x_i is discrete, a Gibbs sampling update may choose a new value that is the same as the old value. A theorem of Peskun indicates that, when i is chosen randomly, a reversible method that reduces the probability of such self transitions, while increasing the probabilities of transitioning to each of the other values, will decrease the asymptotic variance of estimates. This has inspired two modified Gibbs sampling methods, originally due to Frigessi, et al and to Liu, though these do not always reduce self transitions to the minimum possible. Methods that do reduce the probability of self transitions to the minimum, but do not satisfy the conditions of Peskun's theorem, have also been devised, by Suwa and Todo. I review past methods, and introduce a broader class of reversible methods, based on what I call "antithetic modification", which also reduce asymptotic variance compared to Gibbs sampling, even when not satisfying the conditions of Peskun's theorem. A modification of one method in this class reduces self transitions to the minimum possible, while still always reducing asymptotic variance compared to Gibbs sampling. I introduce another new class of non-reversible methods based on slice sampling that can also minimize self transition probabilities. I provide explicit, efficient implementations of all these methods, and compare their performance in simulations of a 2D Potts model, a Bayesian mixture model, and a belief network with unobserved variables. The non-reversibility produced by sequential updating can be beneficial, but no consistent benefit is seen from the individual updates being done by a non-reversible method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员