For an $N \times T$ random matrix $X(\beta)$ with weakly dependent uniformly sub-Gaussian entries $x_{it}(\beta)$ that may depend on a possibly infinite-dimensional parameter $\beta\in \mathbf{B}$, we obtain a uniform bound on its operator norm of the form $\mathbb{E} \sup_{\beta \in \mathbf{B}} ||X(\beta)|| \leq CK \left(\sqrt{\max(N,T)} + \gamma_2(\mathbf{B},d_\mathbf{B})\right)$, where $C$ is an absolute constant, $K$ controls the tail behavior of (the increments of) $x_{it}(\cdot)$, and $\gamma_2(\mathbf{B},d_\mathbf{B})$ is Talagrand's functional, a measure of multi-scale complexity of the metric space $(\mathbf{B},d_\mathbf{B})$. We illustrate how this result may be used for estimation that seeks to minimize the operator norm of moment conditions as well as for estimation of the maximal number of factors with functional data.


翻译:$N\timettt 随机基质 $X(\\beta){(leq) CK\left(sqrt) coUGB(N,T)}+\gamma_2(\\mathbbf{B})\bf{B}B}美元,对于可能依赖可能无限的参数$\bet\在\mathbffnB}B}B$的美元,我们获得一个统一的其操作者规范标准,即:$mathbb{E}E}\\\\\\sup{(sup\mab{B}}}(美元)的增量),以及$gammama___X( 2(\bet)\\\\\\(lebet)\\\ leqleQKKKKKKK {(= gamamama____x增增量) 美元和 =gama_gama_( mabru) 的底數的底數行的底數行數行行行行行行行行的數行數行行行行行行行行行數的數行數行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行的行的

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员