In-memory computing (IMC) offloads parts of the computations to memory to fulfill the performance and energy demands of applications such as neuromorphic computing, machine learning, and image processing. Fortunately, the main features that stochastic computing (SC) and IMC share, which are low computation complexity and high bit-parallel computation capability, promise great potential for integrating SC and IMC. In this paper, we exploit this potential by using stochastic computation as an approximation method to present effective in-memory computations with a good trade-off among design parameters. To this end, first, commonly used stochastic arithmetic operations of applications are effectively implemented using the primitive logic gates of the IMC method. Next, the in-memory scheduling and mapping of applications are obtained efficiently by a proposed algorithm. This algorithm reduces the computation latency by enabling intra-subarray parallelism while considering the IMC method constraints. Subsequently, a bit-parallel stochastic IMC architecture, Stoch-IMC, is presented that enables bit parallelization of stochastic computations over memory subarrays/banks. To evaluate Stoch-IMC's effectiveness, various analyses were conducted. Results show average performance improvements of 135.7X and 124.2X across applications compared to binary IMC and related in-memory SC methods, respectively. The results also demonstrate an average energy reduction of 1.5X compared to binary IMC, with limited energy overhead relative to the in-memory SC method. Furthermore, the results reveal average lifetime improvements of 4.9X and 216.3X over binary IMC and in-memory SC methods, respectively, along with high bitflip tolerance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IMC:Internet Measurement Conference。 Explanation:互联网测量会议。 Publisher:ACM/USENIX。 SIT: http://dblp.uni-trier.de/db/conf/imc/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员