Object detection and segmentation are two core modules of an autonomous vehicle perception system. They should have high efficiency and low latency while reducing computational complexity. Currently, the most commonly used algorithms are based on deep neural networks, which guarantee high efficiency but require high-performance computing platforms. In the case of autonomous vehicles, i.e. cars, but also drones, it is necessary to use embedded platforms with limited computing power, which makes it difficult to meet the requirements described above. A reduction in the complexity of the network can be achieved by using an appropriate: architecture, representation (reduced numerical precision, quantisation, pruning), and computing platform. In this paper, we focus on the first factor - the use of so-called detection-segmentation networks as a component of a perception system. We considered the task of segmenting the drivable area and road markings in combination with the detection of selected objects (pedestrians, traffic lights, and obstacles). We compared the performance of three different architectures described in the literature: MultiTask V3, HybridNets, and YOLOP. We conducted the experiments on a custom dataset consisting of approximately 500 images of the drivable area and lane markings, and 250 images of detected objects. Of the three methods analysed, MultiTask V3 proved to be the best, achieving 99% mAP_50 for detection, 97% MIoU for drivable area segmentation, and 91% MIoU for lane segmentation, as well as 124 fps on the RTX 3060 graphics card. This architecture is a good solution for embedded perception systems for autonomous vehicles. The code is available at: https://github.com/vision-agh/MMAR_2023.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
22+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月21日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
22+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员