Prediction of outstanding claims has been done via nonparametric models (chain ladder), semiparametric models (overdispersed poisson) or fully parametric models. In this paper, we propose models based on negative binomial distributions for the prediction of outstanding number of claims, which are particularly useful to account for overdispersion. We first assume independence of random variables and introduce appropriate notation. Later, we generalise the model to account for dependence across development years. In both cases, the marginal distributions are negative binomials. We study the properties of the models and carry out bayesian inference. We illustrate the performance of the models with simulated and real datasets.


翻译:未决索赔的预测通常通过非参数模型(链梯法)、半参数模型(过离散泊松模型)或完全参数模型实现。本文提出基于负二项分布的模型用于预测未决索赔次数,该模型特别适用于处理过离散现象。我们首先假设随机变量相互独立并引入相应符号体系,随后将模型推广至考虑不同进展年间的相依性。两种情形下的边际分布均为负二项分布。我们研究了模型的性质并执行贝叶斯推断,通过模拟数据集与真实数据集验证了模型的性能。

0
下载
关闭预览

相关内容

二项分布是由伯努利提出的概念,指的是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
19+阅读 · 2021年8月15日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
专知会员服务
19+阅读 · 2021年8月15日
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员