The study of regularity in signals can be of great importance, typically in medicine to analyse electrocardiogram (ECG) or electromyography (EMG) signals, but also in climate studies, finance or security. In this work we focus on security primitives such as Physical Unclonable Functions (PUFs) or Pseudo-Random Number Generators (PRNGs). Such primitives must have a high level of complexity or entropy in their responses to guarantee enough security for their applications. There are several ways of assessing the complexity of their responses, especially in the binary domain. With the development of analog PUFs such as optical (photonic) PUFs, it would be useful to be able to assess their complexity in the analog domain when designing them, for example, before converting analog signals into binary. In this numerical study, we decided to explore the potential of the disentropy of autocorrelation as a measure of complexity for security primitives as PUFs or PRNGs with analog output or responses. We compare this metric to others used to assess regularities in analog signals such as Approximate Entropy (ApEn) and Fuzzy Entropy (FuzEn). We show that the disentropy of autocorrelation is able to differentiate between well-known PRNGs and non-optimised or bad PRNGs in the analog and binary domain with a better contrast than ApEn and FuzEn. Next, we show that the disentropy of autocorrelation is able to detect small patterns injected in PUFs responses and then we applied it to photonic PUFs simulations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员