Efficiently pricing multi-asset options poses a significant challenge in quantitative finance. The Monte Carlo (MC) method remains the prevalent choice for pricing engines; however, its slow convergence rate impedes its practical application. Fourier methods leverage the knowledge of the characteristic function to accurately and rapidly value options with up to two assets. Nevertheless, they face hurdles in the high-dimensional settings due to the tensor product (TP) structure of commonly employed quadrature techniques. This work advocates using the randomized quasi-MC (RQMC) quadrature to improve the scalability of Fourier methods with high dimensions. The RQMC technique benefits from the smoothness of the integrand and alleviates the curse of dimensionality while providing practical error estimates. Nonetheless, the applicability of RQMC on the unbounded domain, $\mathbb{R}^d$, requires a domain transformation to $[0,1]^d$, which may result in singularities of the transformed integrand at the corners of the hypercube, and deteriorate the rate of convergence of RQMC. To circumvent this difficulty, we design an efficient domain transformation procedure based on the derived boundary growth conditions of the integrand. This transformation preserves the sufficient regularity of the integrand and hence improves the rate of convergence of RQMC. To validate this analysis, we demonstrate the efficiency of employing RQMC with an appropriate transformation to evaluate options in the Fourier space for various pricing models, payoffs, and dimensions. Finally, we highlight the computational advantage of applying RQMC over MC or TP in the Fourier domain, and over MC in the physical domain for options with up to 15 assets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员