We prove rates of convergence and robustness to prior misspecification within a Generalised Variational Inference (GVI) framework with bounded divergences. This addresses a significant open challenge for GVI and Federated GVI that employ a different divergence to the Kullback-Leibler under prior misspecification, operate within a subset of possible probability measures, and result in intractable posteriors. Our theoretical contributions extend to misspecified priors that lead to inconsistent Bayes posteriors. In particular, we are able to establish sufficient conditions for existence and uniqueness of GVI posteriors on arbitrary Polish spaces, prove that the GVI posterior measure concentrates on a neighbourhood of loss minimisers, and extend this to rates of convergence regardless of the prior measure.


翻译:我们在采用有界散度的广义变分推断(GVI)框架内,证明了先验误设条件下的收敛速率与稳健性。这解决了GVI及联邦GVI领域一个重要的开放性挑战:这些方法在先验误设时使用不同于Kullback-Leibler散度的度量,在可能概率测度的子集上操作,并导致后验分布难以处理。我们的理论贡献进一步扩展到会导致贝叶斯后验不一致的误设先验。具体而言,我们能够在任意波兰空间上建立GVI后验存在性与唯一性的充分条件,证明GVI后验测度集中于损失最小化点的邻域,并将此结论推广到与先验测度无关的收敛速率分析。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
41+阅读 · 2021年2月12日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月29日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2024】变分薛定谔扩散模型
专知会员服务
20+阅读 · 2024年5月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
41+阅读 · 2021年2月12日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员