Performance metrics in sports, such as shot speed and angle, provide crucial feedback for athlete development. However, the technology to capture these metrics has historically been expensive, complex, and largely inaccessible to amateur and recreational players. This paper addresses this gap in the context of badminton, one of the world's most popular sports, by introducing a novel, cost-effective, and user-friendly system for measuring smash speed using ubiquitous smartphone technology. Our approach leverages a custom-trained YOLOv5 model for shuttlecock detection, combined with a Kalman filter for robust trajectory tracking. By implementing a video-based kinematic speed estimation method with spatiotemporal scaling, the system automatically calculates the shuttlecock's velocity from a standard video recording. The entire process is packaged into an intuitive mobile application, democratizing access to high-level performance analytics and empowering players at all levels to analyze and improve their game.


翻译:体育中的性能指标,如击球速度与角度,为运动员发展提供了关键反馈。然而,采集这些指标的技术历来昂贵、复杂,且对业余和休闲运动员而言难以获取。本文针对羽毛球——全球最受欢迎的运动之一——弥补这一空白,提出了一种新颖、经济且用户友好的系统,利用普及的智能手机技术测量扣杀速度。我们的方法采用定制训练的YOLOv5模型进行羽毛球检测,并结合卡尔曼滤波器实现鲁棒的轨迹跟踪。通过实施基于视频的时空缩放运动学速度估计方法,该系统可从标准视频录像中自动计算羽毛球的速度。整个流程被封装为直观的移动应用程序,使高水平性能分析得以普及,并赋能各级别运动员分析和提升其竞技水平。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员