Bayesian methods provide an elegant framework for estimating parameter posteriors and quantification of uncertainty associated with probabilistic models. However, they often suffer from slow inference times. To address this challenge, Bayesian Pseudo-Coresets (BPC) have emerged as a promising solution. BPC methods aim to create a small synthetic dataset, known as pseudo-coresets, that approximates the posterior inference achieved with the original dataset. This approximation is achieved by optimizing a divergence measure between the true posterior and the pseudo-coreset posterior. Various divergence measures have been proposed for constructing pseudo-coresets, with forward Kullback-Leibler (KL) divergence being the most successful. However, using forward KL divergence necessitates sampling from the pseudo-coreset posterior, often accomplished through approximate Gaussian variational distributions. Alternatively, one could employ Markov Chain Monte Carlo (MCMC) methods for sampling, but this becomes challenging in high-dimensional parameter spaces due to slow mixing. In this study, we introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence. Importantly, optimizing contrastive divergence eliminates the need for approximations in the pseudo-coreset construction process. Furthermore, it enables the use of finite-step MCMC methods, alleviating the requirement for extensive mixing to reach a stationary distribution. To validate our method's effectiveness, we conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员