The performance of pavement under loading depends on the strength of the subgrade. However, experimental estimation of properties of pavement strengths such as California bearing ratio (CBR), unconfined compressive strength (UCS) and resistance value (R) are often tedious, time-consuming and costly, thereby inspiring a growing interest in machine learning based tools which are simple, cheap and fast alternatives. Thus, the potential application of two boosting techniques; categorical boosting (CatBoost) and extreme gradient boosting (XGBoost) and support vector regression (SVR), is similarly explored in this study for estimation of properties of subgrade soil modified with hydrated lime activated rice husk ash (HARSH). Using 121 experimental data samples of varying proportions of HARSH, plastic limit, liquid limit, plasticity index, clay activity, optimum moisture content, and maximum dry density as input for CBR, UCS and R estimation, four evaluation metrics namely coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to evaluate the models' performance. The results indicate that XGBoost outperformed CatBoost and SVR in estimating these properties, yielding R2 of 0.9994, 0.9995 and 0.9999 in estimating the CBR, UCS and R respectively. Also, SVR outperformed CatBoost in estimating the CBR and R with R2 of 0.9997 respectively. On the other hand, CatBoost outperformed SVR in estimating the UCS with R2 of 0.9994. Feature sensitivity analysis shows that the three machine learning techniques are unanimous that increasing HARSH proportion lead to values of the estimated properties respectively. A comparison with previous results also shows superiority of XGBoost in estimating subgrade properties.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员