This paper extends the family of gap-based local planners to unknown dynamic environments through generating provable collision-free properties for hierarchical navigation systems. Existing perception-informed local planners that operate in dynamic environments rely on emergent or empirical robustness for collision avoidance as opposed to performing formal analysis of dynamic obstacles. In addition to this, the obstacle tracking that is performed in these existent planners is often achieved with respect to a global inertial frame, subjecting such tracking estimates to transformation errors from odometry drift. The proposed local planner, dynamic gap, shifts the tracking paradigm to modeling how the free space, represented as gaps, evolves over time. Gap crossing and closing conditions are developed to aid in determining the feasibility of passage through gaps, and a breadth of simulation benchmarking is performed against other navigation planners in the literature where the proposed dynamic gap planner achieves the highest success rate out of all planners tested in all environments.


翻译:本文通过为分层导航系统生成可证明的无碰撞特性,将基于间隙的局部规划器系列扩展到未知动态环境。现有在动态环境中运行的感知信息局部规划器依赖于涌现性或经验性鲁棒性进行避碰,而非对动态障碍物进行形式化分析。此外,这些现有规划器中的障碍物追踪通常基于全局惯性坐标系实现,使得追踪估计易受里程计漂移引起的变换误差影响。所提出的局部规划器——动态间隙——将追踪范式转变为对以间隙形式表示的自由空间随时间演化的建模。本文建立了间隙穿越与闭合条件以辅助判断通过间隙的可行性,并通过大量仿真基准测试与文献中其他导航规划器进行对比,结果表明所提出的动态间隙规划器在所有测试环境中的所有规划器中取得了最高的成功率。

0
下载
关闭预览

相关内容

【AAAI2025】TimeDP:通过领域提示学习生成多领域时间序列
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【AAAI2025】TimeDP:通过领域提示学习生成多领域时间序列
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员