Combining large language models with evolutionary computation algorithms represents a promising research direction leveraging the remarkable generative and in-context learning capabilities of LLMs with the strengths of evolutionary algorithms. In this work, we present EvoCAD, a method for generating computer-aided design (CAD) objects through their symbolic representations using vision language models and evolutionary optimization. Our method samples multiple CAD objects, which are then optimized using an evolutionary approach with vision language and reasoning language models. We assess our method using GPT-4V and GPT-4o, evaluating it on the CADPrompt benchmark dataset and comparing it to prior methods. Additionally, we introduce two new metrics based on topological properties defined by the Euler characteristic, which capture a form of semantic similarity between 3D objects. Our results demonstrate that EvoCAD outperforms previous approaches on multiple metrics, particularly in generating topologically correct objects, which can be efficiently evaluated using our two novel metrics that complement existing spatial metrics.


翻译:将大型语言模型与进化计算算法相结合,是一个极具前景的研究方向,它充分利用了LLMs卓越的生成能力和上下文学习优势,同时结合了进化算法的长处。在本工作中,我们提出了EvoCAD,一种利用视觉语言模型和进化优化,通过符号表示生成计算机辅助设计(CAD)对象的方法。我们的方法对多个CAD对象进行采样,然后使用结合了视觉语言与推理语言模型的进化方法对其进行优化。我们使用GPT-4V和GPT-4o评估了我们的方法,在CADPrompt基准数据集上进行了测试,并与先前的方法进行了比较。此外,我们引入了两个基于欧拉特性定义的拓扑性质的新指标,它们能够捕捉3D对象之间的一种语义相似性。我们的结果表明,EvoCAD在多项指标上优于先前的方法,特别是在生成拓扑结构正确的对象方面,这可以通过我们提出的两个新颖指标来高效评估,它们补充了现有的空间度量指标。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员