A near-field integrated sensing, positioning, and communication (ISPAC) framework is proposed, where a base station (BS) simultaneously serves multiple communication users and carries out target sensing and positioning. A novel double-array structure is proposed to enable the near-field ISPAC at the BS. Specifically, a small-scale assisting transceiver (AT) is attached to the large-scale main transceiver (MT) to empower the communication system with the ability of sensing and positioning. Based on the proposed framework, the joint angle and distance Cram\'er-Rao bound (CRB) is first derived. Then, the CRB is minimized subject to the minimum communication rate requirement in both downlink and uplink ISPAC scenarios: 1) For downlink ISPAC, a downlink target positioning algorithm is proposed and a penalty dual decomposition (PDD)-based double-loop algorithm is developed to tackle the non-convex optimization problem. 2) For uplink ISPAC, an uplink target positioning algorithm is proposed and an efficient alternating optimization algorithm is conceived to solve the non-convex CRB minimization problem with coupled user communication and target probing design. Both proposed optimization algorithms can converge to a stationary point of the CRB minimization problem. Numerical results show that: 1) The proposed ISPAC system can locate the target in both angle and distance domains merely relying on single BS and limited bandwidths; and 2) the positioning performance achieved by the hybrid-analog-and-digital ISPAC approaches that achieved by fully digital ISPAC when the communication rate requirement is not stringent.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员