We consider pure-exploration problems in the context of stochastic sequential adaptive experiments with a finite set of alternatives. The central objective is to answer a query regarding the alternatives with high confidence while minimizing measurement efforts. One canonical example is identifying the best-performing alternative, a problem known as ranking and selection in simulation or best-arm identification in machine learning. We formulate the problem complexity measure as a maximin optimization problem for the static fixed-budget, fixed-confidence, and posterior convergence rate settings. By incorporating dual variables directly into the analysis, we derive necessary and sufficient conditions for an allocation's optimality. The introduction of dual variables allows us to sidestep the combinatorial complexity that arises when considering only primal variables. These optimality conditions enable the extension of the top-two algorithm design principle to more general pure-exploration problems. Moreover, our analysis yields a straightforward and effective information-directed selection rule that adaptively chooses from a candidate set based on the informational value of the candidates. We demonstrate the broad range of contexts in which our design principle can be implemented. In particular, when combined with information-directed selection, top-two Thompson sampling achieves asymptotic optimality in Gaussian best-arm identification, resolving a notable open question in the pure-exploration literature. Our algorithm attains optimality in $\varepsilon$-best-arm identification (or ranking and selection with a probability of good selection guarantee) and thresholding bandits. Our results provide a general principle for adapting Thompson sampling to general pure-exploration problems. Numerical experiments highlight the efficiency of our proposed algorithms compared to existing methods.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员