Capturing and rendering three-dimensional (3D) objects in real time remain a significant challenge, yet hold substantial potential for applications in augmented reality, digital twin systems, remote collaboration and prototyping. We present an end-to-end pipeline that leverages 3D Gaussian Splatting (3D GS) to enable rapid acquisition and interactive rendering of real-world objects using a mobile device, cloud processing and a local computer. Users scan an object with a smartphone video, upload it for automated 3D reconstruction, and visualize it interactively in Unity at an average of 150 frames per second (fps) on a laptop. The system integrates mobile capture, cloud-based 3D GS and Unity rendering to support real-time telepresence. Our experiments show that the pipeline processes scans in approximately 10 minutes on a graphics processing unit (GPU) achieving real-time rendering on the laptop.


翻译:实时捕获与渲染三维物体仍是一项重大挑战,但在增强现实、数字孪生系统、远程协作与原型设计等领域具有巨大应用潜力。我们提出了一种端到端流程,该流程利用三维高斯泼溅技术,通过移动设备、云端处理和本地计算机实现真实世界物体的快速采集与交互式渲染。用户使用智能手机视频扫描物体,将其上传以进行自动三维重建,并在Unity中以笔记本电脑上平均每秒150帧的速率进行交互式可视化。该系统集成了移动端采集、基于云端的三维高斯泼溅与Unity渲染,以支持实时远程呈现。我们的实验表明,该流程在图形处理器上处理扫描耗时约10分钟,并在笔记本电脑上实现了实时渲染。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员