Inertial localization is particularly valuable in GPS-denied environments such as indoors. However, localization using only Inertial Measurement Units (IMUs) suffers from drift caused by motion-process noise and sensor biases. This paper introduces Uncertainty-aware Map-constrained Inertial Localization (UMLoc), an end-to-end framework that jointly models IMU uncertainty and map constraints to achieve drift-resilient positioning. UMLoc integrates two coupled modules: (1) a Long Short-Term Memory (LSTM) quantile regressor, which estimates the specific quantiles needed to define 68%, 90%, and 95% prediction intervals serving as a measure of localization uncertainty and (2) a Conditioned Generative Adversarial Network (CGAN) with cross-attention that fuses IMU dynamic data with distance-based floor-plan maps to generate geometrically feasible trajectories. The modules are trained jointly, allowing uncertainty estimates to propagate through the CGAN during trajectory generation. UMLoc was evaluated on three datasets, including a newly collected 2-hour indoor benchmark with time-aligned IMU data, ground-truth poses and floor-plan maps. Results show that the method achieves a mean drift ratio of 5.9% over a 70 m travel distance and an average Absolute Trajectory Error (ATE) of 1.36 m, while maintaining calibrated prediction bounds.


翻译:惯性定位在室内等GPS拒止环境中具有重要价值。然而,仅使用惯性测量单元(IMU)的定位会受到运动过程噪声和传感器偏差引起的漂移影响。本文提出不确定性感知地图约束惯性定位(UMLoc),这是一个端到端框架,通过联合建模IMU不确定性与地图约束来实现抗漂移定位。UMLoc集成两个耦合模块:(1)长短期记忆(LSTM)分位数回归器,用于估计定义68%、90%和95%预测区间所需的具体分位数,作为定位不确定性的度量;(2)具有交叉注意力的条件生成对抗网络(CGAN),该网络融合IMU动态数据与基于距离的平面布局图,以生成几何可行的轨迹。两个模块联合训练,使得不确定性估计能够在轨迹生成过程中通过CGAN传播。我们在三个数据集上评估了UMLoc,包括一个新收集的2小时室内基准数据集,该数据集包含时间对齐的IMU数据、真实位姿和平面布局图。结果表明,该方法在70米行程距离上实现了5.9%的平均漂移比和1.36米的平均绝对轨迹误差(ATE),同时保持校准的预测边界。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NeurIPS2019】图变换网络:Graph Transformer Network
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员