In this paper, we study the asymptotic properties (bias, variance, mean squared error) of Bernstein estimators for cumulative distribution functions and density functions near and on the boundary of the $d$-dimensional simplex. The simplex is an important case as it is the natural domain of compositional data and has been neglected in the literature. Our results generalize those found in Leblanc (2012), who treated the case $d=1$, and complement the results from Ouimet (2020) in the interior of the simplex. Different parts of the boundary having different dimensions makes the analysis more difficult.


翻译:在本文中,我们研究了伯恩斯泰因测算员在美元-维简单x的附近和边界上累积分布函数和密度函数的无症状属性(比值、差异、平均平方差),这是一个重要的案例,因为它是组成数据的自然领域,在文献中被忽略。我们的结果概括了Leblanc(2012年)中处理案件的人($d=1美元),并补充了简单x内部Oimet(202020年)的结果。 边界的不同部分具有不同层面,使得分析更加困难。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
67+阅读 · 2021年8月20日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
67+阅读 · 2021年8月20日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员