We revisit the replica method for analyzing inference and learning in parametric models, considering situations where the data-generating distribution is unknown or analytically intractable. Instead of assuming idealized distributions to carry out quenched averages analytically, we use a variational Gaussian approximation for the replicated system in grand canonical formalism in which the data average can be deferred and replaced by empirical averages, leading to stationarity conditions that adaptively determine the parameters of the trial Hamiltonian for each dataset. This approach clarifies how fluctuations affect information extraction and connects directly with the results of mathematical statistics or learning theory such as information criteria. As a concrete application, we analyze linear regression and derive learning curves. This includes cases with real-world datasets, where exact replica calculations are not feasible.


翻译:我们重新审视了用于分析参数化模型中推断与学习过程的复本方法,考虑数据生成分布未知或解析不可处理的情形。不同于假设理想化分布以解析执行淬火平均,我们在巨正则形式中对复本系统采用变分高斯近似,使得数据平均可被延后并替换为经验平均,从而产生自适应确定每个数据集试验哈密顿量参数的平稳条件。该方法阐明了涨落如何影响信息提取,并直接与数理统计或学习理论(如信息准则)的结果相连接。作为具体应用,我们分析了线性回归并推导了学习曲线,其中包括使用真实世界数据集的案例——这些情况下精确的复本计算是不可行的。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员