From a first-principles perspective, it may seem odd that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure. Specifically, one first trains a reward model (RM) on some dataset (e.g., human preferences) before using it to provide online feedback as part of a downstream reinforcement learning (RL) procedure, rather than directly optimizing the policy parameters on said dataset via offline maximum likelihood estimation. In fact, from an information-theoretic perspective, we can only lose information via passing through a reward model and cannot create any new information via on-policy sampling. To explain this discrepancy, we scrutinize several hypotheses on the value of RL in FT through both theoretical and empirical lenses. Of the hypotheses considered, we find the most support for the explanation that on problems with a generation-verification gap, (1) it is relatively easy to learn the relatively simple RM (verifier) from the preference data. Then, (2) the downstream RL procedure only returns policies (generators) that are optimal for such relatively simple verifiers. Thus, end-to-end, two-stage online FT only has to search over a reduced subset of the full space of policies, requiring less data than offline FT.


翻译:从第一性原理的视角来看,基础模型微调(FT)的最强结果是通过一个相对复杂的两阶段训练流程实现的,这似乎有些奇怪。具体而言,研究者首先在某个数据集(例如人类偏好)上训练一个奖励模型(RM),然后将其作为下游强化学习(RL)流程的一部分来提供在线反馈,而不是通过离线最大似然估计直接在该数据集上优化策略参数。事实上,从信息论的视角来看,通过奖励模型传递信息只会导致信息损失,而无法通过在线策略采样创造任何新信息。为了解释这种差异,我们通过理论和实证的视角,仔细审视了关于RL在FT中价值的几种假设。在所考虑的假设中,我们发现最有支持的论点是:在存在生成-验证差距的问题上,(1)从偏好数据中学习相对简单的RM(验证器)是相对容易的。然后,(2)下游RL流程仅返回对此类相对简单的验证器而言最优的策略(生成器)。因此,端到端的两阶段在线FT只需在全策略空间的一个缩减子集中进行搜索,所需数据量少于离线FT。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员