We present two new a posteriori error estimates for the Hellan--Herrmann--Johnson method in Kirchhoff--Love plate theory. The first error estimator uses a postprocessed deflection and controls the $L^2$ moment error and the discrete $H^2$ deflection error. The second one is based on the postprocessed deflection and moment fields and superconvergence analysis in both variables. The effectiveness of the theoretical results is numerically validated in several experiments.


翻译:我们为Kirchhoff-Love板块理论中的Hellan-Hermann-Johnson方法提出了两个新的事后误差估计数。第一个误差估计器使用后处理偏转法,控制了2美元瞬间误差和2美元偏转误差。第二个误差基于两个变量的后处理偏转法和瞬间字段以及超趋同分析。理论结果的有效性在若干实验中得到了数字验证。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员