The Natural Language to SQL (NL2SQL) technology provides non-expert users who are unfamiliar with databases the opportunity to use SQL for data analysis.Converting Natural Language to Business Intelligence (NL2BI) is a popular practical scenario for NL2SQL in actual production systems. Compared to NL2SQL, NL2BI introduces more challenges. In this paper, we propose ChatBI, a comprehensive and efficient technology for solving the NL2BI task. First, we analyze the interaction mode, an important module where NL2SQL and NL2BI differ in use, and design a smaller and cheaper model to match this interaction mode. In BI scenarios, tables contain a huge number of columns, making it impossible for existing NL2SQL methods that rely on Large Language Models (LLMs) for schema linking to proceed due to token limitations. The higher proportion of ambiguous columns in BI scenarios also makes schema linking difficult. ChatBI combines existing view technology in the database community to first decompose the schema linking problem into a Single View Selection problem and then uses a smaller and cheaper machine learning model to select the single view with a significantly reduced number of columns. The columns of this single view are then passed as the required columns for schema linking into the LLM. Finally, ChatBI proposes a phased process flow different from existing process flows, which allows ChatBI to generate SQL containing complex semantics and comparison relations more accurately. We have deployed ChatBI on Baidu's data platform and integrated it into multiple product lines for large-scale production task evaluation. The obtained results highlight its superiority in practicality, versatility, and efficiency. At the same time, compared with the current mainstream NL2SQL technology under our real BI scenario data tables and queries, it also achieved the best results.


翻译:暂无翻译

1
下载
关闭预览

相关内容

SQL 全名是结构化查询语言,是用于数据库中的标准数据查询语言,IBM 公司最早使用在其开发的数据库系统中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员