We study the asymptotic spectral distribution of the conjugate kernel random matrix $YY^\top$, where $Y= f(WX)$ arises from a two-layer neural network model. We consider the setting where $W$ and $X$ are random rectangular matrices with i.i.d.\ entries, where the entries of $W$ follow a heavy-tailed distribution, while those of $X$ have light tails. Our assumptions on $W$ include a broad class of heavy-tailed distributions, such as symmetric $α$-stable laws with $α\in ]0,2[$ and sparse matrices with $\mathcal{O}(1)$ nonzero entries per row. The activation function $f$, applied entrywise, is bounded, smooth, odd, and nonlinear. We compute the limiting eigenvalue distribution of $YY^\top$ through its moments and show that heavy-tailed weights induce strong correlations between the entries of $Y$, resulting in richer and fundamentally different spectral behavior compared to the light-tailed case.


翻译:我们研究了两层神经网络模型产生的共轭核随机矩阵 $YY^\top$ 的渐近谱分布,其中 $Y= f(WX)$。我们考虑 $W$ 和 $X$ 为具有独立同分布元素的随机矩形矩阵的情形:$W$ 的元素服从重尾分布,而 $X$ 的元素具有轻尾。我们对 $W$ 的假设涵盖了一类广泛的重尾分布,例如指数 $α\in ]0,2[$ 的对称 $α$-稳定律,以及每行具有 $\mathcal{O}(1)$ 个非零元素的稀疏矩阵。按元素施加的激活函数 $f$ 是有界、光滑、奇性且非线性的。我们通过矩计算 $YY^\top$ 的极限特征值分布,并证明重尾权重会导致 $Y$ 的元素之间产生强相关性,从而产生比轻尾情形更丰富且本质上不同的谱行为。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员