DeepSeek-AI,Daya Guo,Dejian Yang,Haowei Zhang,Junxiao Song,Peiyi Wang,Qihao Zhu,Runxin Xu,Ruoyu Zhang,Shirong Ma,Xiao Bi,Xiaokang Zhang,Xingkai Yu,Yu Wu,Z. F. Wu,Zhibin Gou,Zhihong Shao,Zhuoshu Li,Ziyi Gao,Aixin Liu,Bing Xue,Bingxuan Wang,Bochao Wu,Bei Feng,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Qu,Hui Li,Jianzhong Guo,Jiashi Li,Jiawei Wang,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,J. L. Cai,Jiaqi Ni,Jian Liang,Jin Chen,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Liang Zhao,Litong Wang,Liyue Zhang,Lei Xu,Leyi Xia,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Meng Li,Miaojun Wang,Mingming Li,Ning Tian,Panpan Huang,Peng Zhang,Qiancheng Wang,Qinyu Chen,Qiushi Du,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,R. J. Chen,R. L. Jin,Ruyi Chen,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shengfeng Ye,Shiyu Wang,Shuiping Yu,Shunfeng Zhou,Shuting Pan,S. S. Li,Shuang Zhou,Shaoqing Wu,Shengfeng Ye,Tao Yun,Tian Pei,Tianyu Sun,T. Wang,Wangding Zeng,Wanjia Zhao,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,W. L. Xiao,Wei An,Xiaodong Liu,Xiaohan Wang,Xiaokang Chen,Xiaotao Nie,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,X. Q. Li,Xiangyue Jin,Xiaojin Shen,Xiaosha Chen,Xiaowen Sun,Xiaoxiang Wang,Xinnan Song,Xinyi Zhou,Xianzu Wang,Xinxia Shan,Y. K. Li,Y. Q. Wang,Y. X. Wei,Yang Zhang,Yanhong Xu,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Wang,Yi Yu,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yuan Ou,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yunfan Xiong,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Y. X. Zhu,Yanhong Xu,Yanping Huang,Yaohui Li,Yi Zheng,Yuchen Zhu,Yunxian Ma,Ying Tang,Yukun Zha,Yuting Yan,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhicheng Ma,Zhigang Yan,Zhiyu Wu,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Zizheng Pan,Zhen Huang,Zhipeng Xu,Zhongyu Zhang,Zhen Zhang
DeepSeek-AI,Daya Guo,Dejian Yang,Haowei Zhang,Junxiao Song,Peiyi Wang,Qihao Zhu,Runxin Xu,Ruoyu Zhang,Shirong Ma,Xiao Bi,Xiaokang Zhang,Xingkai Yu,Yu Wu,Z. F. Wu,Zhibin Gou,Zhihong Shao,Zhuoshu Li,Ziyi Gao,Aixin Liu,Bing Xue,Bingxuan Wang,Bochao Wu,Bei Feng,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Qu,Hui Li,Jianzhong Guo,Jiashi Li,Jiawei Wang,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,J. L. Cai,Jiaqi Ni,Jian Liang,Jin Chen,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Liang Zhao,Litong Wang,Liyue Zhang,Lei Xu,Leyi Xia,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Meng Li,Miaojun Wang,Mingming Li,Ning Tian,Panpan Huang,Peng Zhang,Qiancheng Wang,Qinyu Chen,Qiushi Du,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,R. J. Chen,R. L. Jin,Ruyi Chen,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shengfeng Ye,Shiyu Wang,Shuiping Yu,Shunfeng Zhou,Shuting Pan,S. S. Li,Shuang Zhou,Shaoqing Wu,Shengfeng Ye,Tao Yun,Tian Pei,Tianyu Sun,T. Wang,Wangding Zeng,Wanjia Zhao,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,W. L. Xiao,Wei An,Xiaodong Liu,Xiaohan Wang,Xiaokang Chen,Xiaotao Nie,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,X. Q. Li,Xiangyue Jin,Xiaojin Shen,Xiaosha Chen,Xiaowen Sun,Xiaoxiang Wang,Xinnan Song,Xinyi Zhou,Xianzu Wang,Xinxia Shan,Y. K. Li,Y. Q. Wang,Y. X. Wei,Yang Zhang,Yanhong Xu,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Wang,Yi Yu,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yuan Ou,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yunfan Xiong,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Y. X. Zhu,Yanhong Xu,Yanping Huang,Yaohui Li,Yi Zheng,Yuchen Zhu,Yunxian Ma,Ying Tang,Yukun Zha,Yuting Yan,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhicheng Ma,Zhigang Yan,Zhiyu Wu,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Zizheng Pan,Zhen Huang,Zhipeng Xu,Zhongyu Zhang,Zhen Zhang

General reasoning represents a long-standing and formidable challenge in artificial intelligence. Recent breakthroughs, exemplified by large language models (LLMs) and chain-of-thought prompting, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent upon extensive human-annotated demonstrations, and models' capabilities are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labeled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification, and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions, and STEM fields, surpassing its counterparts trained via conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically harnessed to guide and enhance the reasoning capabilities of smaller models.


翻译:通用推理是人工智能领域一个长期存在且艰巨的挑战。以大型语言模型(LLMs)和思维链提示为代表的近期突破,在基础推理任务上取得了显著成功。然而,这种成功在很大程度上依赖于大量的人工标注演示,并且模型在处理更复杂问题时的能力仍然不足。本文表明,可以通过纯强化学习(RL)来激励LLMs的推理能力,从而无需人工标注的推理轨迹。所提出的RL框架促进了高级推理模式的出现,例如自我反思、验证和动态策略适应。因此,经过训练的模型在可验证任务(如数学、编程竞赛和STEM领域)上取得了卓越的性能,超越了通过传统监督学习在人类演示上训练的同类模型。此外,这些大规模模型所展现出的涌现推理模式可以被系统地利用,以指导和增强较小模型的推理能力。

0
下载
关闭预览

相关内容

UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员