Despite its prevalent use in image-text matching tasks in a zero-shot manner, CLIP has been shown to be highly vulnerable to adversarial perturbations added onto images. Recent studies propose to finetune the vision encoder of CLIP with adversarial samples generated on the fly, and show improved robustness against adversarial attacks on a spectrum of downstream datasets, a property termed as zero-shot robustness. In this paper, we show that malicious perturbations that seek to maximise the classification loss lead to `falsely stable' images, and propose to leverage the pre-trained vision encoder of CLIP to counterattack such adversarial images during inference to achieve robustness. Our paradigm is simple and training-free, providing the first method to defend CLIP from adversarial attacks at test time, which is orthogonal to existing methods aiming to boost zero-shot adversarial robustness of CLIP. We conduct experiments across 16 classification datasets, and demonstrate stable and consistent gains compared to test-time defence methods adapted from existing adversarial robustness studies that do not rely on external networks, without noticeably impairing performance on clean images. We also show that our paradigm can be employed on CLIP models that have been adversarially finetuned to further enhance their robustness at test time. Our code is available \href{https://github.com/Sxing2/CLIP-Test-time-Counterattacks}{here}.


翻译:尽管CLIP在零样本方式下的图文匹配任务中被广泛使用,但研究表明其对图像添加的对抗性扰动高度脆弱。近期研究提出通过动态生成的对抗样本微调CLIP的视觉编码器,并在多个下游数据集上展现出对抗攻击的增强鲁棒性,该特性被称为零样本鲁棒性。本文发现,旨在最大化分类损失的恶意扰动会导致“虚假稳定”图像,并提出在推理阶段利用CLIP预训练的视觉编码器对此类对抗图像进行反攻以实现鲁棒性。我们的范式简洁且无需训练,首次实现了在测试时防御CLIP免受对抗攻击的方法,这与现有旨在提升CLIP零样本对抗鲁棒性的方法形成正交补充。我们在16个分类数据集上进行实验,相较于从现有不依赖外部网络的对抗鲁棒性研究中适配的测试时防御方法,本方法在保持干净图像性能无明显下降的同时,展现出稳定且一致的性能提升。我们还证明该范式可应用于经过对抗微调的CLIP模型,以进一步增强其在测试时的鲁棒性。代码发布于\href{https://github.com/Sxing2/CLIP-Test-time-Counterattacks}{此处}。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员