Despite recent progresses of practical asynchronous Byzantine fault tolerant (BFT) consensus, the state-of-the-art designs still suffer from suboptimal performance. Particularly, to obtain maximum throughput, most existing protocols with guaranteed linear amortized communication complexity require each participating node to broadcast a huge batch of transactions, which dramatically sacrifices latency. Worse still, the f slowest nodes' broadcasts might never be agreed to output and thus can be censored (where f is the number of faults). Implementable mitigation to the threat either uses computationally costly threshold encryption or incurs communication blow-up, thus causing further efficiency issues. We present Dumbo-NG, a novel asynchronous BFT consensus (atomic broadcast) to solve the remaining practical issues. Its technical core is a non-trivial direct reduction from asynchronous atomic broadcast to multi-valued validated Byzantine agreement (MVBA) with quality property. Most interestingly, the new protocol structure empowers completely concurrent execution of transaction dissemination and asynchronous agreement. This brings about two benefits: (i) the throughput-latency tension is resolved to approach peak throughput with minimal increase in latency; (ii) the transactions broadcasted by any honest node can be agreed to output, thus conquering the censorship threat with no extra cost. We implement Dumbo-NG and compare it to the state-of-the-art asynchronous BFT with guaranteed censorship resilience including Dumbo (CCS'20) and Speeding-Dumbo (NDSS'22). We also apply the techniques from Speeding-Dumbo to DispersedLedger (NSDI'22) and obtain an improved variant of DispersedLedger called sDumbo-DL for comprehensive comparison. Extensive experiments reveal: Dumbo-NG realizes better peak throughput performance and its latency can almost remain stable when throughput grows.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员