The vertebrate motor system employs dimensionality-reducing strategies to limit the complexity of movement coordination, for efficient motor control. But when environments are dense with hidden action-outcome contingencies, movement complexity can promote behavioral innovation. Humans, perhaps uniquely, may infer the presence of hidden environmental dynamics from social cues, by drawing upon computational mechanisms shared with Theory of Mind. This proposed "Theory of Environment" supports behavioral innovation by expanding the dimensionality of motor exploration.


翻译:脊椎动物运动系统采用降维策略来限制运动协调的复杂性,以实现高效的运动控制。然而,当环境中充满隐藏的动作-结果关联时,运动复杂性可以促进行为创新。人类或许独特地能够通过利用与心智理论共享的计算机制,从社会线索中推断隐藏环境动态的存在。这一提出的“环境理论”通过扩展运动探索的维度来支持行为创新。

0
下载
关闭预览

相关内容

【KDD2023】发现动态因果空间进行DAG结构学习
专知会员服务
33+阅读 · 2023年6月9日
【NeurIPS2022】通过模型转换的可解释强化学习
专知会员服务
38+阅读 · 2022年10月4日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员