A new exploratory technique called biarchetype analysis is defined. We extend archetype analysis to find the archetypes of both observations and features simultaneously. The idea of this new unsupervised machine learning tool is to represent observations and features by instances of pure types (biarchetypes) that can be easily interpreted as they are mixtures of observations and features. Furthermore, the observations and features are expressed as mixtures of the biarchetypes, which also helps understand the structure of the data. We propose an algorithm to solve biarchetype analysis. We show that biarchetype analysis offers advantages over biclustering, especially in terms of interpretability. This is because byarchetypes are extreme instances as opposed to the centroids returned by biclustering, which favors human understanding. Biarchetype analysis is applied to several machine learning problems to illustrate its usefulness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员