Potassium disorders are generally asymptomatic, potentially lethal, and common in patients with renal or cardiac disease. The morphology of the electrocardiogram (ECG) signal is very sensitive to the changes in potassium ions, so ECG has a high potential for detecting dyskalemias before laboratory results. In this regard, this paper introduces a new system for ECG-based potassium measurement. The proposed system consists of three main steps. First, cohort selection & data labeling were carried out by using a 5- minute interval between ECGs and potassium measurements and defining three labels: hypokalemia, normal, and hyperkalemia. After that, feature extraction & selection were performed. The extracted features are RR interval, PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, T axis, and ACCI. Kruskal-Wallis technique was also used to assess the importance of the features and to select discriminative ones. Finally, an ANFIS model based on FCM clustering (FCM-ANFIS) was designed based on the selected features. The used database is ECG-ViEW II. Results showed that T axis compared with other features has a significant relationship with potassium levels (P<0.01, r=0.62). The absolute error of FCM-ANFIS is 0.4+-0.3 mM, its mean absolute percentage error (MAPE) is 9.99%, and its r-squared value is 0.74. Its classification accuracy is 85.71%. In detecting hypokalemia and hyperkalemia, the sensitivities are 60% and 80%, respectively, and the specificities are 100% and 97.3%, respectively. This research has shed light on the design of noninvasive instruments to measure potassium concentration and to detect dyskalemias, thereby reducing cardiac events.


翻译:暂无翻译

0
下载
关闭预览

相关内容

2015年,由IEEE可靠性协会主办的SERE会议(IEEE国际软件安全与可靠性会议)和QSIC会议(IEEE国际质量软件会议)合并为一个会议Q R S,Q代表质量,R代表可靠性,S代表安全性。本次会议为来自工业界和学术界的工程师和科学家提供了一个平台,展示他们正在进行的工作,介绍他们的研究成果和经验,并讨论开发可靠、安全和可信系统的最佳和最有效的技术。它也为学术界提供了一个极好的机会,使他们能够在实践者将他们的需求摆在桌面上时,更加了解对软件行业至关重要的主题领域。第20届QRS会议将于2020年7月27日至31日在立陶宛维尔纽斯举行。官网链接:https://qrs20.techconf.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员