Since their proposal in the 2014 paper by Ian Goodfellow, there has been an explosion of research into the area of Generative Adversarial Networks. While they have been utilised in many fields, the realm of malware research is a problem space in which GANs have taken root. From balancing datasets to creating unseen examples in rare classes, GAN models offer extensive opportunities for application. This paper surveys the current research and literature for the use of Generative Adversarial Networks in the malware problem space. This is done with the hope that the reader may be able to gain an overall understanding as to what the Generative Adversarial model provides for this field, and for what areas within malware research it is best utilised. It covers the current related surveys, the different categories of GAN, and gives the outcomes of recent research into optimising GANs for different topics, as well as future directions for exploration.


翻译:自Ian Goodfellow在2014年的论文中提出建议以来,对创能反逆网络领域的研究迅速展开,虽然这些研究已在许多领域得到利用,但恶意软件研究领域是一个问题空间,GANs已经扎根。从平衡数据集到在稀有类别中创建未知实例,GAN模型提供了广泛的应用机会。本文调查了当前用于在恶意软件问题空间使用创能反逆网络的研究和文献,希望读者能够全面了解《创能反逆网络模型》为该领域提供的内容,以及它最佳利用的恶意软件研究领域。它涵盖了当前的相关调查,GAN的不同类别,并提供了近期研究结果,为不同专题优化GANs以及未来探索方向提供了优化GANs的研究成果。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员