Combinatorial optimization with a smooth and convex objective function arises naturally in applications such as discrete mean-variance portfolio optimization, where assets must be traded in integer quantities. Although optimal solutions to the associated smooth problem can be computed efficiently, existing adiabatic quantum optimization methods cannot leverage this information. Moreover, while various warm-starting strategies have been proposed for gate-based quantum optimization, none of them explicitly integrate insights from the relaxed continuous solution into the QUBO formulation. In this work, a novel approach is introduced that restricts the search space to discrete solutions in the vicinity of the continuous optimum by constructing a compact Hilbert space, thereby reducing the number of required qubits. Experiments on software solvers and a D-Wave Advantage quantum annealer demonstrate that our method outperforms state-of-the-art techniques.


翻译:在离散均值-方差投资组合优化等应用中,当资产必须以整数单位交易时,自然会产生具有光滑凸目标函数的组合优化问题。尽管相关光滑问题的最优解可被高效计算,现有的绝热量子优化方法却无法利用这一信息。此外,尽管已针对基于门电路的量子优化提出了多种热启动策略,但尚无方法将松弛连续解的洞见明确整合至QUBO(二次无约束二进制优化)表述中。本研究提出一种创新方法,通过构建紧凑的希尔伯特空间,将搜索空间限制在连续最优解附近的离散解集,从而减少所需量子比特数。在软件求解器与D-Wave Advantage量子退火器上的实验表明,本方法性能优于现有最先进技术。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2019年11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2019年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员