As a promising 6G enabler beyond conventional bit-level transmission, semantic communication can considerably reduce required bandwidth resources, while its combination with multiple access requires further exploration. This paper proposes a knowledge distillation-driven and diffusion-enhanced (KDD) semantic non-orthogonal multiple access (NOMA), named KDD-SemNOMA, for multi-user uplink wireless image transmission. Specifically, to ensure robust feature transmission across diverse transmission conditions, we firstly develop a ConvNeXt-based deep joint source and channel coding architecture with enhanced adaptive feature module. This module incorporates signal-to-noise ratio and channel state information to dynamically adapt to additive white Gaussian noise and Rayleigh fading channels. Furthermore, to improve image restoration quality without inference overhead, we introduce a two-stage knowledge distillation strategy, i.e., a teacher model, trained on interference-free orthogonal transmission, guides a student model via feature affinity distillation and cross-head prediction distillation. Moreover, a diffusion model-based refinement stage leverages generative priors to transform initial SemNOMA outputs into high-fidelity images with enhanced perceptual quality. Extensive experiments on CIFAR-10 and FFHQ-256 datasets demonstrate superior performance over state-of-the-art methods, delivering satisfactory reconstruction performance even at extremely poor channel conditions. These results highlight the advantages in both pixel-level accuracy and perceptual metrics, effectively mitigating interference and enabling high-quality image recovery.


翻译:作为超越传统比特级传输的6G关键使能技术,语义通信可显著降低所需带宽资源,但其与多址接入的结合仍需深入探索。本文提出一种知识蒸馏驱动与扩散增强的语义非正交多址传输方案,命名为KDD-SemNOMA,用于多用户上行无线图像传输。具体而言,为保障不同传输条件下的鲁棒特征传输,我们首先构建了基于ConvNeXt的深度联合信源信道编码架构,并引入增强型自适应特征模块。该模块融合信噪比与信道状态信息,动态适配加性高斯白噪声与瑞利衰落信道。进一步地,为在不增加推理开销的前提下提升图像重建质量,我们设计了两阶段知识蒸馏策略:在无干扰正交传输条件下训练的教师模型,通过特征亲和蒸馏与跨头预测蒸馏指导学生模型。此外,基于扩散模型的精细化阶段利用生成先验,将初始SemNOMA输出转化为具有增强感知质量的高保真图像。在CIFAR-10与FFHQ-256数据集上的大量实验表明,本方法在极差信道条件下仍能实现令人满意的重建性能,其像素级精度与感知指标均优于现有先进方法,有效抑制干扰并实现高质量图像恢复。

0
下载
关闭预览

相关内容

【CVPR2024】VideoMAC: 视频掩码自编码器与卷积神经网络
专知会员服务
17+阅读 · 2024年3月4日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员