We devise a data structure that can answer shortest path queries for two query points in a polygonal domain $P$ on $n$ vertices. For any $\varepsilon > 0$, the space complexity of the data structure is $O(n^{10+\varepsilon })$ and queries can be answered in $O(\log n)$ time. Alternatively, we can achieve a space complexity of $O(n^{9+\varepsilon })$ by relaxing the query time to $O(\log^2 n)$. This is the first improvement upon a conference paper by Chiang and Mitchell from 1999. They present a data structure with $O(n^{11})$ space complexity and $O(\log n)$ query time. Our main result can be extended to include a space-time trade-off. Specifically, we devise data structures with $O(n^{9+\varepsilon}/\hspace{1pt} \ell^{4 + O(\varepsilon )})$ space complexity and $O(\ell \log^2 n )$ query time, for any integer $1 \leq \ell \leq n$. Furthermore, we present improved data structures with $O(\log n)$ query time for the special case where we restrict one (or both) of the query points to lie on the boundary of $P$. When one of the query points is restricted to lie on the boundary, and the other query point is unrestricted, the space complexity becomes $O(n^{6+\varepsilon})$. When both query points are on the boundary, the space complexity is decreased further to $O(n^{4+\varepsilon })$, thereby improving an earlier result of Bae and Okamoto.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员