We present an initial evaluation of NASA and IBM's Prithvi-EO-2.0 geospatial foundation model on shoreline delineation of small sandy islands using satellite images. We curated and labeled a dataset of 225 multispectral images of two Maldivian islands, which we publicly release, and fine-tuned both the 300M and 600M parameter versions of Prithvi on training subsets ranging from 5 to 181 images. Our experiments show that even with as few as 5 training images, the models achieve high performance (F1 of 0.94, IoU of 0.79). Our results demonstrate the strong transfer learning capability of Prithvi, underscoring the potential of such models to support coastal monitoring in data-poor regions.


翻译:我们首次评估了NASA与IBM联合开发的Prithvi-EO-2.0地理空间基础模型在卫星影像上对小型沙质岛屿海岸线的划定能力。我们构建并标注了包含两个马尔代夫岛屿的225幅多光谱影像数据集(已公开发布),并使用5至181幅训练子集分别对Prithvi的3亿参数和6亿参数版本进行微调。实验表明,即使仅使用5幅训练图像,模型仍能实现高性能(F1分数0.94,交并比0.79)。我们的结果证明了Prithvi强大的迁移学习能力,凸显了此类模型在数据匮乏区域支持海岸线监测的潜力。

0
下载
关闭预览

相关内容

大模型是基于海量多源数据打造的预训练模型,是对原有算法模型的技术升级和产品迭代,用户可通过开源或开放API/工具等形式进行模型零样本/小样本数据学习,以实现更优的识别、理解、决策、生成效果和更低成本的开发部署方案。
【ICML2024】多元化对齐路线图
专知会员服务
22+阅读 · 2024年5月2日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员