The \emph{maximal $k$-edge-connected subgraphs} problem is a classical graph clustering problem studied since the 70's. Surprisingly, no non-trivial technique for this problem in weighted graphs is known: a very straightforward recursive-mincut algorithm with $\Omega(mn)$ time has remained the fastest algorithm until now. All previous progress gives a speed-up only when the graph is unweighted, and $k$ is small enough (e.g.~Henzinger~et~al.~(ICALP'15), Chechik~et~al.~(SODA'17), and Forster~et~al.~(SODA'20)). We give the first algorithm that breaks through the long-standing $\tilde{O}(mn)$-time barrier in \emph{weighted undirected} graphs. More specifically, we show a maximal $k$-edge-connected subgraphs algorithm that takes only $\tilde{O}(m\cdot\min\{m^{3/4},n^{4/5}\})$ time. As an immediate application, we can $(1+\epsilon)$-approximate the \emph{strength} of all edges in undirected graphs in the same running time. Our key technique is the first local cut algorithm with \emph{exact} cut-value guarantees whose running time depends only on the output size. All previous local cut algorithms either have running time depending on the cut value of the output, which can be arbitrarily slow in weighted graphs or have approximate cut guarantees.


翻译:===========================================================================================================================================g===================================================================================================================================================================================================================================

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Online $k$-Median with Consistent Clusters
Arxiv
0+阅读 · 2023年3月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员