Motivated by the recently shown connection between self-attention and (kernel) principal component analysis (PCA), we revisit the fundamentals of PCA. Using the difference-of-convex (DC) framework, we present several novel formulations and provide new theoretical insights. In particular, we show the kernelizability and out-of-sample applicability for a PCA-like family of problems. Moreover, we uncover that simultaneous iteration, which is connected to the classical QR algorithm, is an instance of the difference-of-convex algorithm (DCA), offering an optimization perspective on this longstanding method. Further, we describe new algorithms for PCA and empirically compare them with state-of-the-art methods. Lastly, we introduce a kernelizable dual formulation for a robust variant of PCA that minimizes the $l_1$ deviation of the reconstruction errors.


翻译:受自注意力机制与(核)主成分分析(PCA)之间最新关联的启发,我们重新审视了PCA的基本原理。利用凸差(DC)框架,我们提出了若干新颖的表述并提供了新的理论见解。特别地,我们展示了一类PCA式问题的可核化性及样本外适用性。此外,我们发现与经典QR算法相关联的同步迭代法是凸差算法(DCA)的一个实例,这为这一长期存在的方法提供了优化视角。进一步地,我们描述了新的PCA算法,并通过实证将其与前沿方法进行比较。最后,我们针对PCA的鲁棒变体提出了一种可核化的对偶表述,该变体通过最小化重构误差的$l_1$偏差来提升鲁棒性。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Lifelong Learning Metrics
Arxiv
48+阅读 · 2022年1月20日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
31+阅读 · 2020年9月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Lifelong Learning Metrics
Arxiv
48+阅读 · 2022年1月20日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
31+阅读 · 2020年9月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员