In streaming PCA, we see a stream of vectors $x_1, \dotsc, x_n \in \mathbb{R}^d$ and want to estimate the top eigenvector of their covariance matrix. This is easier if the spectral ratio $R = \lambda_1 / \lambda_2$ is large. We ask: how large does $R$ need to be to solve streaming PCA in $\widetilde{O}(d)$ space? Existing algorithms require $R = \widetilde{\Omega}(d)$. We show: (1) For all mergeable summaries, $R = \widetilde{\Omega}(\sqrt{d})$ is necessary. (2) In the insertion-only model, a variant of Oja's algorithm gets $o(1)$ error for $R = O(\log n \log d)$. (3) No algorithm with $o(d^2)$ space gets $o(1)$ error for $R = O(1)$. Our analysis is the first application of Oja's algorithm to adversarial streams. It is also the first algorithm for adversarial streaming PCA that is designed for a spectral, rather than Frobenius, bound on the tail; and the bound it needs is exponentially better than is possible by adapting a Frobenius guarantee.


翻译:暂无翻译

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年9月29日
Arxiv
0+阅读 · 2024年9月28日
Arxiv
0+阅读 · 2024年9月26日
Arxiv
0+阅读 · 2024年9月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年9月29日
Arxiv
0+阅读 · 2024年9月28日
Arxiv
0+阅读 · 2024年9月26日
Arxiv
0+阅读 · 2024年9月26日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员