Developing machine learning (ML) models requires a deep understanding of real-world problems, which are inherently multi-objective. In this paper, we present VirnyFlow, the first design space for responsible model development, designed to assist data scientists in building ML pipelines that are tailored to the specific context of their problem. Unlike conventional AutoML frameworks, VirnyFlow enables users to define customized optimization criteria, perform comprehensive experimentation across pipeline stages, and iteratively refine models in alignment with real-world constraints. Our system integrates evaluation protocol definition, multi-objective Bayesian optimization, cost-aware multi-armed bandits, query optimization, and distributed parallelism into a unified architecture. We show that VirnyFlow significantly outperforms state-of-the-art AutoML systems in both optimization quality and scalability across five real-world benchmarks, offering a flexible, efficient, and responsible alternative to black-box automation in ML development.


翻译:开发机器学习模型需要深入理解现实世界问题,这些问题本质上是多目标的。本文提出VirnyFlow——首个面向负责任模型开发的设计空间,旨在帮助数据科学家构建针对特定问题情境量身定制的机器学习流程。与传统AutoML框架不同,VirnyFlow允许用户定义定制化优化准则,在流程各阶段进行全面实验,并根据现实约束迭代优化模型。本系统将评估协议定义、多目标贝叶斯优化、成本感知多臂老虎机、查询优化和分布式并行技术集成于统一架构。通过在五个现实基准测试中的实验证明,VirnyFlow在优化质量和可扩展性方面均显著优于当前最先进的AutoML系统,为机器学习开发提供了灵活、高效且负责任的替代方案,以取代黑盒自动化范式。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员