The inverse Robin problem covers the determination of the Robin parameter in an elliptic partial differential equation posed on a domain $\Omega$. Given the solution of the Robin problem on a subdomain $\omega \subset \Omega$ together with the elliptic problem's right hand sides, the aim is to solve this inverse Robin problem numerically. In this work, a computational method for the reconstruction of the Robin parameter inspired by a unique continuation method is established. The proposed scheme relies solely on first-order Lagrange finite elements ensuring a straightforward implementation. Under the main assumption that the Robin parameter is in a finite dimensional space of continuously differentiable functions it is shown that the numerical method is second order convergent in the finite element's mesh size. For noisy data this convergence rate is shown to hold true until the noise term dominates the error estimate. Numerical experiments are presented that highlight the feasibility of the Robin parameter reconstruction and that confirm the theoretical convergence results numerically.


翻译:逆Robin问题涉及确定定义在区域$\Omega$上的椭圆型偏微分方程中的Robin参数。给定Robin问题在子区域$\omega \subset \Omega$上的解以及椭圆型问题的右端项,目标是对该逆Robin问题进行数值求解。本文建立了一种受唯一延拓方法启发的Robin参数重构计算方法。所提方案仅依赖于一阶拉格朗日有限元,确保了实现的简便性。在Robin参数属于连续可微函数的有限维空间这一主要假设下,证明了该数值方法在有限元网格尺寸上具有二阶收敛性。对于含噪声数据,该收敛速率在噪声项主导误差估计前保持成立。数值实验展示了Robin参数重构的可行性,并在数值上验证了理论收敛结果。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员