Peer review often involves reviewers submitting their independent reviews, followed by a discussion among reviewers of each paper. A question among policymakers is whether the reviewers of a paper should be anonymous to each other during the discussion. We shed light on this by conducting a randomized controlled trial at the UAI 2022 conference. We randomly split the reviewers and papers into two conditions--one with anonymous discussions and the other with non-anonymous discussions, and conduct an anonymous survey of all reviewers, to address the following questions: 1. Do reviewers discuss more in one of the conditions? Marginally more in anonymous (n = 2281, p = 0.051). 2. Does seniority have more influence on final decisions when non-anonymous? Yes, the decisions are closer to senior reviewers' scores in the non-anonymous condition than in anonymous (n = 484, p = 0.04). 3. Are reviewers more polite in one of the conditions? No significant difference in politeness of reviewers' text-based responses (n = 1125, p = 0.72). 4. Do reviewers' self-reported experiences differ across the two conditions? No significant difference for each of the five questions asked (n = 132 and p > 0.3). 5. Do reviewers prefer one condition over the other? Yes, there is a weak preference for anonymous discussions (n = 159 and Cohen's d= 0.25). 6. What do reviewers consider important to make policy on anonymity among reviewers? Reviewers' feeling of safety in expressing their opinions was rated most important, while polite communication among reviewers was rated least important (n = 159). 7. Have reviewers experienced dishonest behavior due to non-anonymity in discussions? Yes, roughly 7% of respondents answered affirmatively (n = 167). Overall, this experiment reveals evidence supporting an anonymous discussion setup in the peer-review process, in terms of the evaluation criteria considered.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员