Merging satellite and gauge data with machine learning produces high-resolution precipitation datasets, but uncertainty estimates are often missing. We addressed the gap of how to optimally provide such estimates by benchmarking six algorithms, mostly novel even for the more general task of quantifying predictive uncertainty in spatial prediction settings. On 15 years of monthly data from over the contiguous United States (CONUS), we compared quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machine (LightGBM), and quantile regression neural networks (QRNN). Their ability to issue predictive precipitation quantiles at nine quantile levels (0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975), approximating the full probability distribution, was evaluated using quantile scoring functions and the quantile scoring rule. Predictors at a site were nearby values from two satellite precipitation retrievals, namely PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and IMERG (Integrated Multi-satellitE Retrievals), and the site's elevation. The dependent variable was the monthly mean gauge precipitation. With respect to QR, LightGBM showed improved performance in terms of the quantile scoring rule by 11.10%, also surpassing QRF (7.96%), GRF (7.44%), GBM (4.64%) and QRNN (1.73%). Notably, LightGBM outperformed all random forest variants, the current standard in spatial prediction with machine learning. To conclude, we propose a suite of machine learning algorithms for estimating uncertainty in spatial data prediction, supported with a formal evaluation framework based on scoring functions and scoring rules.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员