Speech-driven gesture generation is an emerging domain within virtual human creation, where current methods predominantly utilize Transformer-based architectures that necessitate extensive memory and are characterized by slow inference speeds. In response to these limitations, we propose \textit{DiM-Gestures}, a novel end-to-end generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio, employing Mamba-based architectures. This model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture. The extractor, leveraging a Mamba framework and a WavLM pre-trained model, autonomously derives implicit, continuous fuzzy features, which are then unified into a singular latent feature. This feature is processed by the AdaLN Mamba-2, which implements a uniform conditional mechanism across all tokens to robustly model the interplay between the fuzzy features and the resultant gesture sequence. This innovative approach guarantees high fidelity in gesture-speech synchronization while maintaining the naturalness of the gestures. Employing a diffusion model for training and inference, our framework has undergone extensive subjective and objective evaluations on the ZEGGS and BEAT datasets. These assessments substantiate our model's enhanced performance relative to contemporary state-of-the-art methods, demonstrating competitive outcomes with the DiTs architecture (Persona-Gestors) while optimizing memory usage and accelerating inference speed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2022年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员